Hi , I had just copy this from the Pazon technical help site....hope this help!
ROTOR/TRIGGER AIR-GAP
The working range for the hall-effect sensors used is 0.5-2.5mm, although they will normally work over larger gaps, often up to 5mm. However, use of gaps over 2.5mm may result in non-functioning of the static timing led.
With later systems that use radial triggering (rotor runs through the centre of the trigger), the air-gap is effectively fixed by design. This applies to the later type PD1, PD2, PD3, PDMS1, PDMT1, PDVC1, PDMSV1 and their twin-plug head versions. With the design of the radial triggering systems, variations in the rotor driving shaft (e.g. camshaft) and/or variations in the contact-breaker housing do not affect the air-gap.
Crankshaft triggered systems (PDCTS1, PDCTT1 etc.) also use radial triggering. These systems are normally supplied without a rotor or trigger mounting. The air-gap must be set by the installer within the limits described for reliable operation.
Some systems use axial triggering, where the rotor runs behind (or above) the trigger assembly. This applies to early British single and twin systems (PD1, PD2T, PD2B etc.), Vincent v-twin, Ducati twin, Honda twin, British 90° and 180° crank unit twin and their twin-plug head versions.
With axial triggering it is possible for the air-gap to be outside recommended limits, due to variations in the camshaft or points housing. Often a special/modified camshaft can lead to an excessive air-gap. If this happens the system may still run normally. However, the air-gap should be measured if problems occur with setting the static timing (red led not switching off/on correctly) and/or misfiring or cutting out of the ignition.
To calculate the air-gap, first remove the trigger assembly and measure the height of the hall-effect sensor (small black device on the bottom side of the trigger). Then measure the depth of the steel timing disc (rotor), from the top of the disc to the rim of the points housing (where the trigger sits). Then subtract the first measurement from the second to get the air-gap.
To close up an excessive air-gap will require either a thin metal shim placed around the rotor taper (to move it out), or you could machine a new rotor to suit. If you choose to make a new rotor, it should be machined from mild (low carbon) steel. Depending on the system, the rotor requires one, two or three 8mm holes, radius 17mm. If you don’t have the capability to make the full rotor with taper, you could machine just the top section, i.e. add steel disc to the existing rotor. You would need to ensure there are no screw heads etc. passing under the face of the hall-effect sensor. So it would need to be carefully welded around the outer circumference, or fixed with screws from behind going into blind threads (stopping say 1mm short of the top surface).